The crystal and molecular structures of the pentitol penta-acetates

Jürgen Kopf a, Martina Morf a, Bärbel Zimmer a and Peter Köll b

(Received December 23rd, 1991; accepted February 14th, 1992)

ABSTRACT

The crystal structures of the 1,2,3,4,5-penta-acetates of ribitol, xylitol, and D- and DL-arabinitol have been determined. A modification (mp 50°, space group $P\overline{1}$) of xylitol penta-acetate was investigated, which is not that (mp 65°, space group $P2_1/c$) usually encountered.

INTRODUCTION

The crystal structures of all of the hexitol hexa-acetates (racemates included) have been reported¹⁻³ with the exception of that of p-altritol hexa-acetate which resisted crystallisation till now. These investigations supported evidence^{4,5} that the steric influence of 1,3-parallel interactions of C and/or O atoms (designated as C//O and O//O, respectively) in acyclic carbohydrates has been overestimated⁶.

We now report on the solid-state conformations of the pentitol penta-acetates, knowing that acetylated oxygens could be less sterically demanding than hydroxyl groups⁷.

RESULTS AND DISCUSSION

In the pentitol series, three diastereomers are possible, two of which (ribitol and xylitol) are *meso* compounds, whereas arabinitol is asymmetric chiral. Therefore, excluding polymorphs, four solid-state structures have to be considered for the

^a Institute of Inorganic and Applied Chemistry, The University, Martin-Luther-King-Platz 6, D-W 2000 Hamburg 13 (Germany)

^b Department of Chemistry, Organic Chemistry, The University, Carl-von-Ossietzky-Str. 9-11, D-W 2900 Oldenburg (Germany)

Correspondence to: Privatdozent Dr. J. Kopf, Institute of Inorganic and Applied Chemistry, The University, Martin-Luther-King-Platz 6, D-W 2000 Hamburg 13, Germany; or to: Professor Dr. P. Köll, Department of Chemistry, Organic Chemistry, The University, Carl-von-Ossietzky-Str. 9-11, D-W 2900 Oldenburg, Germany.

TABLE I
Crystallographic data for 1, 2 (modification with a low melting point), D-3, and DL-3 ^a

Data	1	2	D- 3	DL-3
Formula	C ₁₅ H ₂₂ O ₁₀			
Mol wt	362.33	362.33	362,33	362.33
Mp (degrees)	51	49-51	75	95-96
Crystal dimensions (mm)	$0.2\times0.1\times0.1$	$0.4\times0.4\times0.3$	$0.2 \times 0.3 \times 0.4$	$0.3 \times 0.3 \times 0.4$
Space group	$P2_1/c$	$P\overline{1}$	$P2_{1}2_{1}2_{1}$	$P2_1/a$
Cell parameter (pm, degrees)				
a	1255.6(1)	875.8(1)	865.1(1)	871.6(3)
b	1824.2(1)	1053.9(1)	1212.4(2)	1223.6(4)
c	1679.5(2)	1133.9(2)	3570.6(6)	1784.4(6)
α	(90)	67.00(1)	(90)	(90)
β	101.84(1)	80.20(1)	(90)	93.40(3)
γ	(90)	69.70(1)	(90)	(90)
Volume $V(pm \times 10^6)$	3765.0(6)	902.8(2)	3745(1)	1899.7(11)
\boldsymbol{Z}	8	2	8	4
F(000)	1536	384	1536	768
Calculated density D_x				
$(g \times cm^{-3})$	1.278	1.333	1.285	1.267
λ , $K\alpha_1$ (pm)	154.051(Cu)	70.9261(Mo)	154.051(Cu)	70.9261(Mo)
$\mu \text{ (cm}^{-1})$	8.9	1.1	9.0	1.0
$2\theta_{\rm max}$ (degrees)	130	50	153	45
Reflections				
(symmetry independent)	4934	2975	4094	2124
Reflections				
with $F_0 > x\sigma(F_0)$	2270 (x = 6)	2370 (x = 4)	3264 (x = 3)	1148 (x = 5)
Number of refined				
parameters	463	315	627	294
Ratio of valued reflections				
to parameters	4.9	7.5	5.2	3.9
Final residual factors				
R	0.085	0.062	0.075	0.093
$R_{ m w}$	0.078	0.060	0.077	0.072
Diffractometer	Enraf-	Syntex P21	Enraf-	Syntex P21
	Nonius		Nonius	
	CAD4		CAD4	

^a Standard deviations in parentheses.

pentitol penta-acetates, namely, two *meso* compounds [1,2,3,4,5-penta-O-acetylribitol (1) and 1,2,3,4,5-penta-O-acetylxylitol (2)], one enantiomer [1,2,3,4,5-penta-O-acetyl-D-arabinitol (D-3)], and one racemate [1,2,3,4,5-penta-O-acetyl-D-arabinitol (DL-3)].

Suitable crystals for X-ray determinations were obtained from solutions in ethanol or ether. The structures were determined in the usual way by direct methods using the programs SHELXS90⁸ to solve the phase problem and SHELX76⁹ (blocked matrix) for refinement. Hydrogens were introduced at theoretical positions. Table I covers the crystallographic properties of the compounds investigated and Table II contains the fractional positional parameters of the C

and O atoms. The other basic data have been deposited*. No unusual bond lengths and angles were observed. The crystal structures are represented as SCHAKAL88-drawings¹⁰ (Figs. 1–5) which also show the atom numbering.

meso-*Pentitol penta-acetates*. -1,2,3,4,5-Penta-*O*-acetylribitol (1) and 1,2,3,4,5-penta-*O*-acetylxylitol (2) have long been known as crystalline compounds¹¹⁻¹³. Whereas 1 had mp 51°, as reported¹¹, we encountered a modification of 2, mp $49-51^{\circ}$ (Table I) (the reported^{12,13} mp is $62-65^{\circ}$).

Fig. 1 shows the two independent molecules of 1 as found in the crystal. In order to avoid an unfavourable 1,3-parallel O-2,4 interaction, the central carbon chains are bent into a sickle conformation with the result that individual molecules become chiral. Thus, molecule I has the pseudo-D and molecule II has the pseudo-L configuration and each forms, with symmetry-related molecules, a pseudo-racemate in the crystal. This situation is also observed in ribitol 14. Also, in 1 and ribitol 14, O-1,5 are gauche to their neighbours. This situation is observed generally in alditol acetates 1-3 and often in free alditols, and can be explained by the general "gauche effect" 15.

Xylitol penta-acetate (2) usually occurs 12,13 in a modification with mp $\sim 62^\circ$. Park et al. have reported the structure of this morph (mp 65°, space group $P2_1/c$) shown in Fig. 2. In violation of the "Hassel-Ottar" effect 6, the carbon chain is planar zigzag, and a 1,3-parallel O-2,4 interaction is tolerated. Furthermore, another such "forbidden" O//O interaction (O-3,5) is tolerated. This situation resembles that found in D- and DL-glucitol hexa-acetates $^{1-3}$.

In our laboratory, 2 crystallised in a modification (mp 49–51°, space group $P\overline{1}$) not encountered hitherto. As in crystalline xylitol¹⁶, individual molecules adopt a sickle conformation (Fig. 3), avoid O-2//O-4 interactions, and are chiral. In contrast to the parent compound, which forms single crystals of molecules of the same chirality, and as such is found as a pseudo-conglomerate¹⁶, both morphs of 2 are pseudo-racemates¹⁷.

On the basis of the lower melting point and density D_x , the above modification of 2 should be metastable at room temperature despite the fact that the conformations of individual molecules are in accord with the "Hassel-Ottar" rule⁶.

Dissymmetric pentitol penta-acetates. —1,2,3,4,5-Penta-O-acetyl-D-arabinitol (D-3)^{12,18} crystallises with two independent molecules in the asymmetric unit (Fig. 4). The central carbon chains adopt the expected planar zigzag conformation which has no 1,3-interactions that involve heavy atoms. The overall conformations differ from that for D-arabinitol¹⁹, in that O-1 in D-3 extends the planar chain in each molecule and is gauche to O-2. In one of the two independent molecules of

^{*} Lists of observed and calculated structure amplitudes, atomic co-ordinates of all atoms, including anisotropic thermal factors for C and O, isotropic factors for H, bond distances and angles, and further information to Table I (87 pages) are deposited with, and can be obtained from, Elsevier Science Publishers B.V., BBA Data Deposition, P.O. Box 1527, Amsterdam, Netherlands. Reference should be made to No. BBA/DD/505/Carbohydr. Res., 233 (1992) 35-43.

Fractional positional parameters ($\times 10^4$) of carbon and oxygen atoms in 1, 2 (modification with low melting point), p-3, and pl-3 a TABLE II

Atom	I (molecule I)			1 (molecule II)	<u> </u>		2		
	×	Y	и	x	у	2	x	y	Z
0-1	6351(9)	- 1991(5)	6573(5)	8742(8)	-572(5)	8520(5)	5653(3)	-1296(2)	2601(2)
0-5	7208(6)	- 2352(4)	8246(4)	7850(5)	-248(4)	6857(4)	8185(2)	12(2)	2200(2)
0-3	8918(6)	-3263(4)	7965(4)	6148(5)	678(4)	7054(4)	6568(2)	2106(2)	3132(2)
4-0	6543(5)	- 4324(4)	7056(4)	8408(6)	1770(4)	7991(4)	3854(2)	3423(2)	1448(2)
0-5	8194(7)	- 5062(5)	8235(5)	6771(6)	2463(5)	6787(5)	1558(2)	3914(2)	3257(2)
0-11	5315(8)	- 2938(6)	6032(6)	9833(8)	369(6)	(9)5006	5017(3)	-2189(2)	1327(2)
0-21	6037(7)	-2897(5)	8872(5)	9056(7)	287(5)	6232(5)	9118(3)	1438(3)	386(2)
0-31	9064(7)	-3208(5)	9314(4)	6116(7)	601(5)	5709(5)	7365(5)	404(3)	5053(2)
0-41	6640(6)	- 4606(5)	5763(4)	8309(7)	2037(5)	9277(4)	1846(3)	2997(3)	825(3)
0-51	8981(10)	-6111(6)	8021(6)	5934(10)	3481(16)	(2)	1781(3)	5446(3)	4073(3)
C-1	7178(11)	- 2493(8)	(2)0499	7917(10)	- 46(7)	8243(7)	5802(4)	-74(3)	1474(3)
C-2	7044(9)	-2898(7)	7622(6)	8039(9)	326(6)	7459(6)	6514(3)	826(3)	1831(3)
C-3	7824(10)	-3515(7)	7859(6)	7244(9)	941(6)	7182(6)	5634(3)	1305(3)	2935(3)
C-4	7692(10)	-4129(7)	7223(6)	7294(8)	1546(7)	7818(6)	3893(3)	2268(3)	2671(3)
C-5	8393(9)	-4780(7)	7476(7)	(6)24	2204(7)	7542(7)	3159(4)	2951(3)	3661(3)
C-11	5417(14)	-2298(10)	6140(9)	9706(13)	-279(9)	8902(8)	5241(3)	-2298(3)	2372(3)
C-12	4563(15)	-1746(10)	5833(10)	10577(14)	- 824(9)	9159(9)	5107(4)	-3512(3)	3581(3)
C-21	6658(10)	-2413(7)	8857(7)	8413(10)	-204(7)	6254(7)	9376(4)	479(3)	1404(3)
C-22	6952(11)	-1835(7)	9458(8)	8127(11)	-788(7)	5664(8)	11000(4)	- 368(4)	1973(3)
C-31	9463(10)	-3120(7)	8734(7)	5663(12)	538(7)	6267(7)	7483(4)	1467(3)	4173(3)
C-32	10585(9)	-2868(7)	8754(7)	4485(10)	297(7)	6215(7)	8638(4)	2262(4)	4073(3)
C-41	6120(8)	- 4561(6)	6288(7)	8828(10)	2015(7)	8762(8)	2690(4)	3727(3)	638(3)
C-42	4968(9)	- 4748(7)	6213(7)	9997(10)	2204(7)	8846(6)	2644(5)	5087(4)	- 477(3)
C-51	8558(12)	- 5719(9)	8461(10)	6395(12)	3117(9)	6561(9)	1066(4)	5179(4)	3439(3)
C-52	8361(12)	- 5960(8)	6500(6)	6612(11)	3352(7)	5775(9)	- 447(4)	6161(4)	2755(4)

Atom	D-3 (molecule I)	(1		D-3 (molecule II)	(II)	!	DL-3		
	x	х	z	×	У	Z	×	×	N
٥- ا-	-8039(5)	1801(3)	3548(1)	-8898(5)	6497(4)	5611(1)	1312(8)	3660(5)	9241(4)
0-2	- 9543(4)	2991(3)	3007(1)	- 7420(4)	5513(3)	4993(1)	2795(7)	4547(5)	8024(3)
0-3	-7260(4)	4605(3)	2843(1)	- 9824(4)	3903(3)	4845(1)	411(6)	6140(5)	7594(3)
0-4	-7813(4)	2402(3)	2177(1)	- 9297(4)	6204(3)	4220(1)	1042(6)	3827(4)	6372(3)
0-5	-5503(4)	4021(3)	2028(1)	-11545(5)	4615(3)	4029(1)	-1271(6)	5433(4)	5927(3)
0-11	-7130(6)	2437(4)	4088(1)	-10023(7)	5815(4)	6118(2)	2388(12)	5026(8)	(9)6066
0-21	-10333(4)	1357(3)	2780(1)	- 6807(5)	7295(3)	4870(5)	3462(7)	2776(5)	7837(4)
0-31	- 4734(4)	4625(3)	2977(2)	- 12344(4)	3937(3)	4977(1)	-2096(7)	6091(5)	7857(4)
0-41	-10128(5)	2577(3)	1907(1)	- 6918(6)	6151(4)	3982(2)	3432(8)	3940(6)	5968(4)
0-51	- 4800(5)	5796(3)	2095(2)	-12189(6)	2823(4)	4065(2)	-1923(7)	7220(5)	6045(4)
C-1	- 7246(6)	2659(4)	3347(2)	- 9635(6)	5643(4)	5397(2)	521(10)	4410(8)	8711(6)
C-2	- 7948(5)	2681(4)	2965(2)	- 9043(6)	5783(4)	5008(2)	1171(10)	4270(7)	7966(5)
C-3	-7161(5)	3482(4)	2700(2)	- 9872(6)	5036(4)	4725(2)	352(9)	4994(7)	7357(5)
C-4	- 7905(5)	3530(4)	2319(2)	- 9168(6)	5075(4)	4343(2)	1111(9)	4968(6)	6611(5)
C.5	- 7125(6)	4308(4)	2055(2)	- 9944(6)	4332(5)	4061(2)	355(10)	5697(7)	(2)6009
C-11	- 7869(7)	1770(5)	3918(2)	- 9131(8)	(9)0059	5973(2)	2257(12)	4076(8)	9795(5)
C-12	-8753(8)	868(5)	4094(2)	- 8295(8)	7469(6)	6147(2)	3106(14)	3170(11)	10184(7)
C-21	-10630(6)	2231(4)	2921(2)	-6418(6)	6348(5)	4937(2)	3865(10)	3702(8)	(9)6862
C-22	-12208(6)	2626(5)	3028(2)	- 4796(6)	5942(5)	4945(2)	5441(11)	4103(8)	8155(7)
C-31	-5940(5)	5087(4)	2954(2)	-11167(6)	3429(4)	4953(2)	-955(10)	6584(7)	7795(5)
C-32	-6194(6)	6292(4)	3035(2)	-10972(6)	2232(4)	5035(2)	-768(10)	7810(7)	7945(5)
C-41	- 9041(5)	2015(4)	1991(2)	-8084(7)	6647(5)	4040(2)	2352(10)	3415(7)	(2)0/09
C-42	-8891(6)	807(4)	1900(2)	- 8369(7)	7841(5)	3958(2)	2110(11)	2187(7)	5922(5)
C-51	- 4459(6)	4836(4)	2047(2)	-12578(7)	3769(5)	4025(2)	-2305(10)	6277(8)	5954(5)
C-52	-2857(6)	4427(4)	2011(2)	-14146(7)	4181(6)	3969(2)	-3939(10)	5862(7)	(9)8065

^a Standard deviations in parentheses.

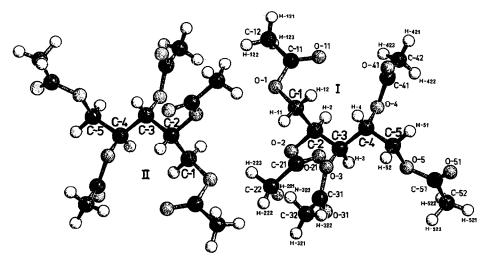


Fig. 1. SCHAKAL88¹⁰ plot of the independent molecules of 1,2,3,4,5-penta-O-acetylribitol (1).

D-arabinitol, O-1 is *trans* to O-2, a situation which is rare in free alditols and not observed hitherto in acetylated alditols (see above).

1,2,3,4,5-Penta-O-acetyl-DL-arabinitol^{18,20} (DL-3) crystallises as a racemate. In Fig. 5, a D molecule is shown, which is symmetry-related to an L enantiomer that

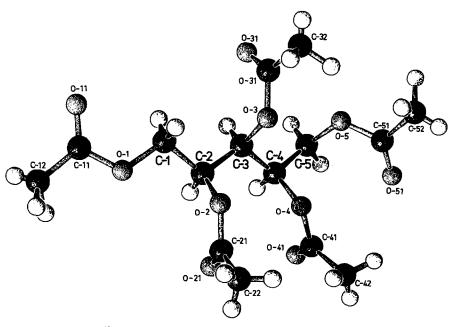


Fig. 2. SCHAKAL88¹⁰ plot of a molecule of the modification¹ of 1,2,3,4,5-penta-O-acetylxylitol (2) with mp 65°.

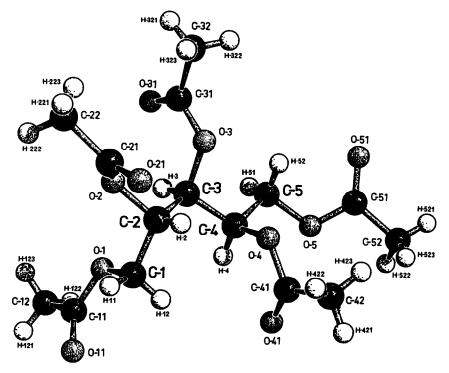


Fig. 3. SCHAKAL88¹⁰ plot of a molecule of the modification of 1,2,3,4,5-penta-O-acetylxylitol (2) with mp 50°.

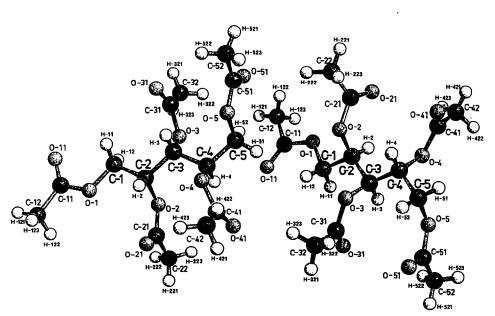


Fig. 4. SCHAKAL88¹⁰ plot of the two independent molecules of 1,2,3,4,5-penta-O-acetyl-D-arabinitol (D-3).

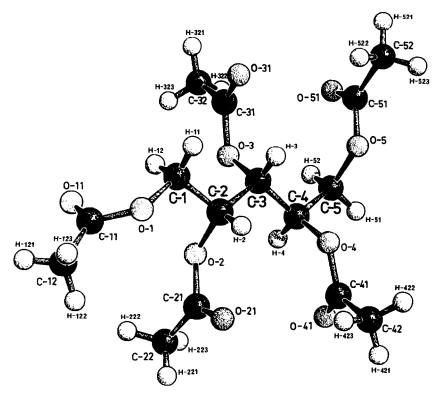


Fig. 5. SCHAKAL88¹⁰ plot of a molecule (D) of 1,2,3,4,5-penta-O-acetyl-DL-arabinitol (DL-3). The asymmetric unit is the L enantiomer.

defines the asymmetric unit. The overall geometry of the single molecules resembles that found in D-3 (Fig. 4) and differs from that of DL-arabinitol²¹, since O-1 is *gauche* to O-2. As in one of the independent molecules in D-arabinitol¹⁹, the molecules in DL-arabinitol²¹ adopt a conformation with O-1,2 *trans*.

Thus, it is clear that the complete set of solid-state structures of the pentitol penta-acetates is much more in accord with traditional assumptions on conformations of acyclic carbohydrates (cf. the "Hassel-Ottar" effect⁶) than the related set of hexitol hexa-acetate structures¹⁻³. Only for xylitol penta-acetate (2) with mp 65° are surprising results reported¹. Therefore, it is concluded that the avoidance of 1,3-parallel interactions between the heavy atoms C and O (C//O and O//O, respectively) is important only in small molecules. The many violations of the "rules" concerning the stereochemistry of acyclic carbohydrates have been summarised³.

EXPERIMENTAL

The compounds investigated were prepared by the procedures cited. The X-ray structure determinations were performed at $\sim 20^{\circ}$ and the results are given in

Table I or are deposited. Calculations of geometries were executed by using the PLATON program²².

ACKNOWLEDGMENTS

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, and Mrs. C. Topf (Hamburg) and Mr. H. Komander (Oldenburg) for technical assistance.

REFERENCES

- 1 Y.J. Park, M.H. Park, and J.M. Shin, Daehan Hwahak Hwoejee, 34 (1990) 517-526; Chem. Abstr., 114 (1991) 82345a.
- 2 J. Kopf, C. Topf, M. Morf, B. Zimmer, and P. Köll, Acta Crystallogr., Sect. C, 47 (1991) 2425-2428.
- 3 J. Kopf, M. Morf, B. Zimmer, M. Bischoff, and P. Köll, Carbohydr. Res., 229 (1992) 17-32.
- 4 S.J. Angyal, J.K. Saunders, C.T. Grainger, R. LeFur, and P.G. Williams, *Carbohydr. Res.*, 150 (1986) 7-21.
- 5 J. Kopf, H. Brandenburg, W. Seelhorst, and P. Köll, Carbohydr. Res., 200 (1990) 339-354; P. Köll, B. Malzahn, and J. Kopf, ibid., 205 (1990) 1-17; J. Kopf, M. Bischoff, and P. Köll, ibid., 217 (1991) 1-6; P. Köll, H. Komander, S.J. Angyal, and J. Kopf, ibid., 218 (1991) 55-62; P. Köll, J. Kopf, M. Morf, B. Zimmer, and J.S. Brimacombe, ibid., submitted.
- 6 G.A. Jeffrey, Acta Crystallogr., Sect. B, 46 (1990) 89-103.
- 7 R.U. Lemieux and A.A. Pavia, Can. J. Chem., 47 (1969) 4441-4446; H. Paulsen and M. Friedmann, Chem. Ber., 105 (1972) 705-717.
- 8 G.M. Sheldrick, Acta Crystallogr., Sect. A, 46 (1990) 467-473.
- 9 G.M. Sheldrick, SHELX76. Programs for Crystal Structure Determination, University of Cambridge, 1976.
- 10 E. Keller, Chem. Unserer Zeit, 14 (1980) 56-60.
- 11 W.W. Binkley and M.L. Wolfrom, J. Am. Chem. Soc., 70 (1948) 2809.
- 12 R.C. Hockett and C.S. Hudson, J. Am. Chem. Soc., 57 (1935) 1753.
- 13 M.L. Wolfrom and E.J. Kohn, J. Am. Chem. Soc., 64 (1942) 1739; J.F. Carson, S.W. Waisbrot, and F.T. Jones, ibid., 65 (1943) 1777–1778; R.M. Hann, A.T. Ness, and C.S. Hudson, ibid., 68 (1946) 1769–1774; M. Abdel-Akher, J.K. Hamilton, and F. Smith, ibid., 73 (1951) 4691–4692.
- 14 H.S. Kim, G.A. Jeffrey, and R.D. Rosenstein, Acta Crystallogr., Sect. B, 25 (1969) 2223-2230.
- 15 S. Wolfe, Acc. Chem. Res., 5 (1972) 102-111; A.J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer Verlag, Berlin, 1983.
- 16 H.S. Kim and G.A. Jeffrey, Acta Crystallogr., Sect. B, 25 (1969) 2607-2613.
- 17 J. Jacques, A. Collet, and S.H. Wilen, *Enantiomers, Racemates and Resolution*, Wiley, New York, 1981.
- 18 Y. Asahina and M. Yanagita, Ber., 67 (1939) 799-803.
- 19 J. Kopf, M. Morf, B. Zimmer, and P. Köll, Carbohydr. Res., 218 (1991) 9-13.
- 20 O. Touster and S.O. Harwell, J. Biol. Chem., 230 (1958) 1031-1041.
- 21 F.D. Hunter and R.D. Rosenstein, Acta Crystallogr., Sect. B, 24 (1968) 1652-1660.
- 22 A.L. Spek, PLATON, in D. Sayre (Ed.), Computational Crystallography, Clarendon Press, Oxford, 1982, p. 528.